3.122 \(\int \frac{x}{(d+e x) \sqrt{d^2-e^2 x^2}} \, dx\)

Optimal. Leaf size=52 \[ \frac{\sqrt{d^2-e^2 x^2}}{e^2 (d+e x)}+\frac{\tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )}{e^2} \]

[Out]

Sqrt[d^2 - e^2*x^2]/(e^2*(d + e*x)) + ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]]/e^2

________________________________________________________________________________________

Rubi [A]  time = 0.0221245, antiderivative size = 52, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {793, 217, 203} \[ \frac{\sqrt{d^2-e^2 x^2}}{e^2 (d+e x)}+\frac{\tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )}{e^2} \]

Antiderivative was successfully verified.

[In]

Int[x/((d + e*x)*Sqrt[d^2 - e^2*x^2]),x]

[Out]

Sqrt[d^2 - e^2*x^2]/(e^2*(d + e*x)) + ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]]/e^2

Rule 793

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d*g - e*f)*(
d + e*x)^m*(a + c*x^2)^(p + 1))/(2*c*d*(m + p + 1)), x] + Dist[(m*(g*c*d + c*e*f) + 2*e*c*f*(p + 1))/(e*(2*c*d
)*(m + p + 1)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && EqQ[c*d^2
 + a*e^2, 0] && ((LtQ[m, -1] &&  !IGtQ[m + p + 1, 0]) || (LtQ[m, 0] && LtQ[p, -1]) || EqQ[m + 2*p + 2, 0]) &&
NeQ[m + p + 1, 0]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x}{(d+e x) \sqrt{d^2-e^2 x^2}} \, dx &=\frac{\sqrt{d^2-e^2 x^2}}{e^2 (d+e x)}+\frac{\int \frac{1}{\sqrt{d^2-e^2 x^2}} \, dx}{e}\\ &=\frac{\sqrt{d^2-e^2 x^2}}{e^2 (d+e x)}+\frac{\operatorname{Subst}\left (\int \frac{1}{1+e^2 x^2} \, dx,x,\frac{x}{\sqrt{d^2-e^2 x^2}}\right )}{e}\\ &=\frac{\sqrt{d^2-e^2 x^2}}{e^2 (d+e x)}+\frac{\tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )}{e^2}\\ \end{align*}

Mathematica [A]  time = 0.0318285, size = 49, normalized size = 0.94 \[ \frac{\frac{\sqrt{d^2-e^2 x^2}}{d+e x}+\tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )}{e^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x/((d + e*x)*Sqrt[d^2 - e^2*x^2]),x]

[Out]

(Sqrt[d^2 - e^2*x^2]/(d + e*x) + ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]])/e^2

________________________________________________________________________________________

Maple [A]  time = 0.053, size = 74, normalized size = 1.4 \begin{align*}{\frac{1}{e}\arctan \left ({x\sqrt{{e}^{2}}{\frac{1}{\sqrt{-{x}^{2}{e}^{2}+{d}^{2}}}}} \right ){\frac{1}{\sqrt{{e}^{2}}}}}+{\frac{1}{{e}^{3}}\sqrt{- \left ({\frac{d}{e}}+x \right ) ^{2}{e}^{2}+2\,de \left ({\frac{d}{e}}+x \right ) } \left ({\frac{d}{e}}+x \right ) ^{-1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(e*x+d)/(-e^2*x^2+d^2)^(1/2),x)

[Out]

1/e/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-e^2*x^2+d^2)^(1/2))+1/e^3/(d/e+x)*(-(d/e+x)^2*e^2+2*d*e*(d/e+x))^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x+d)/(-e^2*x^2+d^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.63051, size = 143, normalized size = 2.75 \begin{align*} \frac{e x - 2 \,{\left (e x + d\right )} \arctan \left (-\frac{d - \sqrt{-e^{2} x^{2} + d^{2}}}{e x}\right ) + d + \sqrt{-e^{2} x^{2} + d^{2}}}{e^{3} x + d e^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x+d)/(-e^2*x^2+d^2)^(1/2),x, algorithm="fricas")

[Out]

(e*x - 2*(e*x + d)*arctan(-(d - sqrt(-e^2*x^2 + d^2))/(e*x)) + d + sqrt(-e^2*x^2 + d^2))/(e^3*x + d*e^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{- \left (- d + e x\right ) \left (d + e x\right )} \left (d + e x\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x+d)/(-e**2*x**2+d**2)**(1/2),x)

[Out]

Integral(x/(sqrt(-(-d + e*x)*(d + e*x))*(d + e*x)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x+d)/(-e^2*x^2+d^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError